
Implementing Clusters for High Availability

James E.J. Bottomley
SteelEye Technology, Inc.

James.Bottomley@steeleye.com

Abstract

We explore the factors which contribute to achieving
High Availability (HA) on Linux, from intrinsic cluster
type to those which lengthen the application’s uptime to
those which reduce the unplanned downtime.

1 Introduction
The venerable Pfister [1] gives a very good survey
of the overall state of clustering on commodity ma-
chines. From his definitions, we will be concentrat-
ing exclusively on High Availability (HA) and exclud-
ing any form of clustering to achieve greater computa-
tional throughput (Usually referred to as High Perfor-
mance Computing [HPC]).

The type of HA cluster plays a role in cluster selec-
tion (see section 2) since that governs its speed and re-
coverability but the primary thing to consider is service
availability: availability is often measured as the ratio of
down time1 to up time [2]. Thus, in its crudest sense,
High Availability is anything that increases Availability
to a given level (often called the class of nines).

There are two ways to increase Availability: improve
up time and reduce down time. The former can often
be achieved by carefully planning the implementation
of your application/cluster. The latter often requires the
implementation of some type of clustering software.

So, the real question is what do you need to do to
increase Availability.

1.1 Class of Nines
When the Availability of a cluster is expressed as a deci-
mal (or a percentage), the number of initial leading nines
in the figure is referred to as the “Class of Nines”; thus

• 0.99987 is class 3 (or 3 nines)
• 0.999967 is class 4 (or 4 nines)

and so on. Each class corresponds to a maximum al-
lowable amount of down time per year in the cluster:

• class 3 is no more than 8 hours, 45 minutes
• class 4 is no more than 52 minutes
• class 5 is no more than 5 minutes, 12 seconds

1.2 The Paradigm for a HA Cluster
The standard template for a HA cluster is shown in fig-
ure 1; it basically consists of multiple redundant net-

works (so that heartbeats between nodes don’t fail be-
cause of network problems), a set of commodity com-
puting hardware (called the nodes) and some type of
shared storage.

Node 1 Node 2 Node N

heartbeat net 2
heartbeat net 1
public net

Shared Storage

Storage Network

Figure 1:A Standard Cluster

2 Types of HA Clusters

The HA cluster market is split broadly into three types:

1. Two Node Only
2. Quorate
3. Resource Driven

The first (Two Node Only) describes any type of clus-
ter whose method of construction does not allow it to ex-
pand beyond two nodes. These clusters, once the main-
stay of the market, are falling rapidly into disuse. The
primary reason seems to be that even if most installa-
tions only actually use two nodes for operation, the abil-
ity of the cluster to expand beyond that number gives the
operator the capacity to add extra nodes at will (whether
to perform a rolling upgrade of the cluster hardware, or
simply to expand the number of active nodes for greater
performance).

2.1 Quorate Clusters

This is often regarded as the paradigm of HA. It de-
scribes the cluster mechanism originally employed by
the Digital’s VAX computers. (The best description is
contained in the much later openVMS documents [3]).
The key element here is that when a cluster forms, it es-
tablishes the number of votes each cluster member has
and compares that against the total available votes. If the



forming cluster has under half (the quorum) it is unable
to perform any operations and must wait until it attains
over half the available votes (becomes quorate). Often
votes are given to so called “tie break” resources like
discs so that the formation of the cluster may be medi-
ated solely by ownership of the tie-breaker resources.

The essential operational feature here is that the clus-
ter control system must first fully recover from the fail-
ure (by establishing communication paths, cluster mem-
bership, voting and so on) before it may proceed to direct
resource recovery.

2.2 Resource Driven Clusters

This type of clustering is not very well covered in the lit-
erature, but it has been in use in clustering technologies
for the last twenty years. The key element is to divide the
resources protected by a cluster into independent group-
ings called hierarchies. Each hierarchy should be ca-
pable of operating independently without needing any
other resources than those which it already contains.
When an event occurs causing the cluster to re-establish,
each node calculates, for each hierarchy, based on the
then available communications information whether it is
the current master (i.e. it has lost contact with all nodes
whose priority is higher for that hierarchy). If the node
is the current hierarchy master, it immediately begins a
recovery. In order to prevent contention, each hierar-
chy must contain one own-able resource (usually disk
resources), ownership of which must be acquired by the
node before hierarchy recovery may begin. In the event
of an incomplete or disrupted communications channel,
the nodes may race for ownership, but only one node
will win out and recover the hierarchy.

The essential operational feature is that no notion of
a “complete” cluster need be maintained. At recovery
time, all a node needs to know is who is who is preferred
over it for mastering a given hierarchy. Operation of a
resource driven cluster doesn’t require complete com-
munications (or even any communication at all) since
the ownership of the own-able resources is the ultimate
arbiter of every hierarchy.

2.3 Comparison of Quorate and Resource
Driven

The resource driven approach has several key benefits
over the quorate approach:

1. the cluster layer can be thinner and simpler. This
is not a direct advantage. However, the HA saying
is “complexity is the enemy of availability”, so the
simpler your HA harness is, the more likely it is to
function correctly under all failure scenarios.

2. recovery proceeds immediately without waiting for
a quorum (or even a full communication set) to

form.
3. Recoveries on different nodes, by virtue of the in-

dependence of the hierarchies, may be effected in
parallel leading to faster overall cluster recovery.

4. May form independent subclusters: In the case
where a cluster is totally partitioned, both parti-
tions may recover hierarchies in a resource driven
cluster; in a quorate cluster, only one partition may
form a viable cluster.

5. recoverability is possible down to last man stand-
ing: As long as any nodes remain (and they can
reach the resources necessary to the hierarchy) re-
covery may be effected. In a quorate cluster, recov-
ery is no longer possible when the remaining nodes
in a cluster lose quorum (either because too many
votes have been lost, or because they can no-longer
make contact with the tie breaker).

There are also several disadvantages:

1. For the paradigm to work, own-ability is a required
property of at least one resource in a hierarchy.
For some hierarchies (notably those not based on
shared discs, like replicated storage) this may not
be possible.

2. Some services exported from a cluster (like thinks
as simple as cluster instance identity number) re-
quire a global state which a resource driven cluster
does not have. Therefore, the cluster services API
of a resource driven cluster is necessarily much less
rich than for a quorate cluster.

3. The very nature of the simultaneous multi-node
parallel recovery may cause a cluster resource
crunch (too many things going on at once).

4. Since each node no-longer has a complete view
of the cluster as a whole, administration becomes
a more complex problem since the administrative
tool must now build up its own view of the clus-
ter from the information contained in the individual
nodes.

However, the prime advantages of simplicity (Less
cluster glue layer, therefore less to go wrong in the clus-
ter program itself) and faster recovery are usually suffi-
cient to recommend the resource driven approach over
the quorate approach for a modern cluster..

Some clustering approaches try to gain the best of
both worlds by attaching quorum resources to every hi-
erarchy in the cluster.

3 Availability
As we said previously, Availability is the ratio of uptime
to uptime plus downtime. Improving availability means
either increasing uptime, decreasing downtime (or both).
It is most important to note that any form of fail-over
HA clustering can only decrease downtime, it cannot in-



crease uptime (because the failure will mostly be visible
to clients). Thus, we describe how to achieve up and
down time improvements.

3.1 Increasing Up Time
It is important to understand initially thatno clustering
software can increase up time. All they can do is reduce
down time. Generally, there are four reasons for lack of
up time:

1. Application failures: The application crashes be-
cause of bad data or other internal coding faults.

2. Server failures: The hardware hosting the applica-
tion fails, often because of internal component fail-
ures, like power supplies, SCSI cards, etc.

3. controllable infrastructure failures: things like
global power supply failure, Internet gateway fail-
ure.

4. uncontrollable failures: Anything else (fire, flood,
earthquake).

3.2 Application Failures
These are often the most insidious, since they can only
be fixed by finding and squashing the particular bug in
the application (and even if you have the source, you
may not have the expertise or time to do this). There are
two types of failure

Non-Deterministic: The failure occurs because of
some internal error depending on the state of everything
that went before it (often due to stack overruns or mem-
ory management problems). This type of failure can
be “fixed” simply by restarting the application and try-
ing again (because the necessary internal state will have
been wiped clean). Non-deterministic failures may also
occur as a result of interference from another node in
the cluster (called a “rogue” node) which believes it has
the right to update the same data the current node is us-
ing. To prevent these type of one node steps on another
node’s data failures from ever occurring in a cluster, I/O
fencing (see section 6 is vitally important.

Deterministic: The crash is in direct response to a
data input, regardless of internal state. This is the patho-
logical failure case, since even if you restart the appli-
cation, it will crash again when you resend it the data it
initially failed on. Therefore, there is no automated way
you can restart the application—someone must manu-
ally clean the failure causing data from its input stream.
This is what Pfister[1] calls this the “Toxic Data Syn-
drome”.

Fortunately, deterministic application failures are very
rare (although they do occur), so they’re more something
to be aware of than something to expect. It is important
to note that nothing can recover from a toxic data trans-
action that the application isrequired to process (rather
than one introduced maliciously simply to crash the ser-

vice) since the application must be fixed before the trans-
action can be processed.

3.3 Server Failures

The easiest (although certainly not the cheapest) way to
get better uptime is to buy better hardware: often ven-
dors sell apparently similar machines labelled “server”
and “workstation” the only difference between them be-
ing the quality of the components and the addition of
redundancy features.

Server redundancy features can be divided into two
categories: those which don’t and do require Operating
System support to function. Of those that don’t:

Redundant Fans: Ironically in these days of increas-
ingly reduced solid state components, we still rely on
simple mechanical (and therefore prone to wear and fail-
ure) devices for cooling: fans. They are often the cheap-
est separate component of any system, and yet if any-
thing goes wrong with them, the entire system will crash
or, in the extreme case of an on-chip CPU fan burn it’s
way through the motherboard. The first thing to note is
that a well engineered box should havenoon-component
fansat all. All fans should be arranged in external banks
to direct airflow over heat-sinks. The arrangement of
the fans should be such that for any fan failure, the re-
maining fans should be sufficient to cool the machine
correctly until the failed fan is replaced.

Redundant Power Supplies: After fans, these are the
next most commonly failing components. A good server
usually has two (or more) separate and fully functional
power supply modules arranged so that for any single
failure, the remaining PSUs can still fully power the box.

Those requiring Operating System support are things
like:

Storage Redundancy: Both via multiple paths to the
storage and multiple controllers within the storage (see
section 3.4).

Active Power Management: With the advent of
ACPI, the trend is toward the Operating System manag-
ing power to the server components. In this scenario, it
becomes the responsibility of the OS to detect any power
failure and possibly lower power consumption in its sys-
tem until the fault is rectified.

Monitoring : This is the most overlooked part of the
whole Server Failure problem. However much expen-
sive hardware you buy, undetected faults will eventually
cause it to die, primarily because the hardware is engi-
neered to withstand a single fault in any subsystem, but
a second fault (which will eventually occur) is usually
fatal. Therefore, if you are going to run your systems
unmonitored, you might just as well have bought the
cheaper hardware and let the HA harness take over on
any single failure.



3.4 Eliminating Single Points Of Failure
Single Points Of Failure (SPOFs) are one of the keys to
controlling uptime. Their elimination is also crucial in
cluster components that the HA harness doesn’t protect:
most often the actual data storage on an external array.

External data protection can be achieved by RAID [4],
which comes in several possible implementations:

1. Software: using themd(or possibly theevms md
personality). This is the cheapest solution, because
it requires no specialised hardware.

2. Host Based RAID: This is a slightly more expen-
sive solution where the RAID function is supplied
by a special card in the server. This can cause
problems clustering though: only some of these
cards support clustering in both the hardware and
the driver, and even if the card supports it, the HA
package might not.

3. External RAID Array . This is the most expen-
sive, but easiest to manage solution: The RAID is
provided in an external package which attaches to
the server via either SCSI or FC.

A particular problem with both software and Host
Based RAID is that the individual node is responsible for
updating the array including the redundancy data. This
can cause a problem if the node crashes in the middle of
an update since the data and the redundancy information
will now be out of sync (although this can be easily de-
tected and corrected). Where the problems become acute
is if the array is being operated in a degraded state. Now,
for all RAID arrays other than RAID-1, the data on the
array may have becomeundetectablycorrupt. For this
reason, only RAID-1 should be considered when imple-
menting either of these array types.

Although RAID eliminates the actual storage medium
of the data as a SPOF, the path to storage (and also the
RAID controller for hardware RAID) still is a SPOF.
The simplest way to eliminate this (applying to both
software and host based raid) is to employ two con-
trollers and two separate SCSI buses as in figure 2.

Hardware RAID arrays also come with a variety of
SPOF elimination techniques, usually in the form of
multiple paths and multiple controllers. The down side
here is that almost every one of these is proprietary to
the individual RAID vendor and often requires driver
add-ons (sometimes binary only) to the Linux kernel2

to operate.

3.5 Infrastructure Failures and Service
Export problems

Another key problem to consider is “what exactly is the
criterion for a service being available”. In the old days,
it was enough to know that the service was being run in
the mainframe room to say that it was available. How-

Node 1 Node 2

RAID−1 across
two volumes

Figure 2:Achieving no Single Point of Failure

ever, nowadays, the service’s users are more often than
not remote from it over the Internet. Therefore, the avail-
ability of the service may be affected by factors beyond
the control of a HA cluster.

To control vulnerability to these external factors, one
must consider the SPOF reduction program as extend-
ing into the Internet domain itself: Your external router
and your ISP may also be SPOFs, so you may wish to
consider provisioning two of them. The expense of do-
ing this for two full blown T1 or higher lines is likely to
be prohibitive. However, one can consider the scenario
where the primary Internet line is backed by a much
cheaper alternative (like DSL or cable modem) so that
if the primary fails, the service becomes degraded, but
not non-functional.

Even within a cluster, it may be possible apparently
to recover the service in a manner which makes it prac-
tically useless. For example, a web server exporting a
service to the Internet should not be recovered on a node
which cannot see the Internet gateway.

For this reason, a utility function per hierarchy could
be calculated (measuring the actual usefulness of recov-
ering the hierarchy on a given node) and taken into con-
sideration when performing recovery.

4 Reducing Down Time
By and large this is recovering as quickly as possible
from a failure when it occurs. In order to reduce the
Down Time to a minimum, this recovery should be au-



tomated. This automation is often done by a High Avail-
ability Harness.

The cardinal thing to consider is the time it takes to re-
store the application to full functionality, which is given
by:

TRestore = TDetect + TRecover (1)

The detection time,TDetect, is entirely driven by the
HA Harness (and should be easily tunable). The applica-
tion recovery time,TRecover, is usually less susceptible
to tuning (although it can be minimised by making sure
necessary data is on a journaling file-system for exam-
ple).

4.1 Linux Specific Problems

One of the major problems with Linux distributions can
be the sheer number of kernel’s available (usually with
distribution proprietary patches), so any HA package
that depends on kernel modifications is obviously go-
ing to have a hard time playing “catch up”. Thus, al-
though kernel support may be standardised by the CGL
specification [5], currently it is a good idea to find a HA
package that doesn’t require any kernel modifications at
all (except possibly to fix kernel bugs detected by the
HA vendor). Unfortunately, protection of certain ser-
vices (like NFS) may be extremely difficult to do un-
aided; however, if your vendor does supply kernels or
modules, make sure they have a good update record for
your chosen distribution.

The greatest (and currently unaddressed) problem
within the Linux kernel is the so called “Oops” issue
where a fault inside the kernel may end up only killing
the process whose user space happens to be above it
rather than taking down the entire machine. This is bad
because the fault may have ramifications beyond the cur-
rent process; the usual consequence of which is that the
machine hangs. Such hangs are inimical to HA software
if they cause the machine to respond normally to heart-
beats but fail (in a locally undetectable manner) to be
exporting the service.

4.2 Replication

This is a useful technology both for Disaster Recovery
and for shared storage elimination. Currently, Linux
has two candidates for providing replication:md/nbd
which places a RAID-1 mirror over a network block
device[6] and is available in the kernel today anddrbd
which is available as a separate package[7].

Some of the cluster packages listed in the appendix
can make use of replication for shared storage replace-
ment.

4.3 2.6 Kernel Enhancements for HA
The most impressive enhancement in 2.6 (although, ob-
viously this wasn’t done exclusively for HA) is the im-
proved robustness of the OS. It seems much less prone
to emit the dreaded Oops (although when it does, it still
erroneously tries to recover rather than doing fast fail-
ure).

The primary new availability feature is the proposed
multi-path solution using the device mapper. Hopefully
when this is implemented by the vendors it will lead to
a single method of controlling and monitoring storage
availability rather than the current 2.4 situation where
each vendor rolls their own.

Finally, there are the indirect enhancements: those
that improve Linux acceptance in the enterprise (where
HA is often a requirement). Things like:

• Large Block Device (LBD) support, which allows
block devices to expand beyond two terabytes.

• Large File and File-system support which takes ad-
vantage of LBD to expand file-systems (and files)
beyond the two terabyte limit.

4.4 The HA Harness
Every piece of current HA software on the market is
structured as a harness that wraps around existing com-
modity applications. This is extremely important point
because the job of current clusters is to work with com-
modity (including software), so the old notion of writing
an application to a HA API to fit it into the HA System
simply doesn’t fly anymore. This approach also plays
into choosing a HA vendor: you need to choose one with
the resources to build these harnesses around a wide se-
lection of existing applications that you might now (or
in the future) want to use.

Choosing such a harness can be very environment
specific. However, there are several points to consider
when making this choice.

• Application monitoring : All applications may fail
(or even worse, hang) in strange ways. However,
if the harness doesn’t detect the failure, you won’t
recover automatically (and thus the down time will
suffer).

• In Node Recovery: If an application failure is de-
tected, can the harness restart itwithout doing a
cross node fail-over. (The application and data are
often hot in the node’s cache, so local restarts can
often be faster).

• Common Application Protection. HA packages
usually require an application “harness” to inter-
face the given application to the HA software. You
should make sure the HA vendor has a good range
of pre-packaged harnesses for common applica-
tions, and evaluate the vendor’s ability to support



custom applications easily.

4.5 Considering More than Two Nodes

The availability defined in the introduction is simply

A =
TUp

TUp + TDown
(2)

One would like simply to replaceTDown by TRecover

and have that be the new Availability. However, life isn’t
quite that simple. In anN node cluster, the Availability
AN is given by

AN =TUp

(
TUp + TDown(1−A)N−1+

TRecover(1− (1−A)N−1)
)−1 (3)

So if really high Availability values are important to
you, more than two nodes becomes a requirement.

However, the most important aspect of more than two
node support is the far more prosaic cluster operation
scenario: as the number of services (≡ hierarchies) in
your cluster increases, the desire to increase the com-
puting power available to them usually dictates larger
clusters with one or two services active per node.

5 Clusters and Service Levels

When all is said and done, anyone implementing a clus-
ter has likely signed off on an agreement to provide a
particular level of service. There are many ways to mea-
sure such a service, and it is important to consider what
you really are trying to achieve before signing off on
one.

5.1 Fault Tolerance v. Fault Resilience

Pfister[1] long ago pointed out that the tendency by
the marketing departments to redefine HA terms at will
makes Humpty Dumpty3 look like a paragon of linguis-
tic virtue. To save confusion, we will define:

Fault Tolerance to mean that any user of the ser-
vice exported from the cluster does not observe any fault
(other than possibly a longer delay than is normal) dur-
ing a switch or fail over, and

Fault Resilience to mean that a fault may be ob-
served, but only inuncommitteddata (i.e. the database
may respond with an error to the attempt to commit a
transaction, etc.).

These distinctions are important, because it is pos-
sible to regard a fault tolerant service as sufferingno
down time even if the machine it is running on crashes,
whereas the potential data fault in a fault resilient service
counts toward down time.

5.2 Converting Fault Resilience to Fault
Tolerance

Given the definitions above, it is apparent that the client
the user employs to make contact with the service may
also form part of the overall experience. Namely, if the
client gets the observable failure, for example the error
on transaction commit, but then itself simply retries the
complete transaction (i.e. the client must be tracking the
entire transaction) and receives a success message back
because the service has been fully recovered, the user’s
experience will once again be seamless.

The moral of this is that if you control the construc-
tion of the client, there are steps you can take outside of
the server’s high availability environment that will dras-
tically improve the users experience, converting it from
one of Fault Resilience (user observes failure) to Fault
Tolerance (user observes no failure).

5.3 Is it Availability you want?

The standard service level agreement is usually phrased
in terms of availability. However, as we’ve seen, avail-
ability can be a tricky thing to determine and can also be
very hard to manage since it depends on uptime which is
outside the capability of any clustering product to con-
trol.

However, consider the nature of most modern Internet
delivered services (the best exemplar being the simple
web-server). Most users, on clicking a URL would try
again, at least once if they receive an error reply. The
Internet has made most web users tolerant of any type of
failure they could put down to latency or routing errors.
Thus, to maintain the appearance of an operational web-
site, uptime and thus availability are completely irrele-
vant. The only parameter which plays any sort of role in
the user’s experience is downtime. As long as you can
have the web-server recovered within the time the user
will tolerate a retry (by ascribing the failure to the In-
ternet) then there will be no discernible outage, and thus
the service level will have met the user’s expectation of
being fully available.

In the example given above, which most user require-
ments tend to fall into, it is important to note that since
uptime turns out to be largely irrelevant, then any money
spent on uptime features is wasted cash. As long as
the investment is in a HA harness which switches over
fast enough, the cheapest possible hardware may be de-
ployed.4

5.4 Important Lessons

The most important observation in all of this is that it
is possible to spend vast amounts of money improving
cluster hardware and uptime, and yet be doing very little
to solve the actual problem (being that of your user’s



experience).
Thereforebeforeeven considering buying hardware

or implementing a cluster, make sure you have a good
grasp on what you’re trying to achieve (and whether you
can also make service affecting improvements in other
areas—like the design of the service client).

6 I/O Fencing

Since clusters may transfer the services (as hierarchies)
among the nodes, it is vitally important that only a sin-
gle copy of a given service be running anywhere in or
outside of the cluster. If this is violated, both of these in-
stances of the service would be accessing and updating
the same data, leading to immediate corruption.

For this reason, it is simply not good enough for a re-
formed cluster to conclude that any nodes that can’t be
contacted is passive and not accessing current data, the
cluster must take action to ensure this.

A primary worry is the so called “Split Brain” sce-
nario where all communication between two nodes is
lost and thus each thinks the other to be dead and tries
to recover the services accordingly. This situation is par-
ticularly insidious if the communication loss was caused
by a “hang” condition on the node currently running the
service, because it may have in-cache data which it will
flush to storage the moment it recovers from the hang.

6.1 Stonith Devices: Node based fencing

Stands for Shoot The Other Node in the Head, and refers
to a mechanism whereby the “other node” is uncondi-
tionally powered off by a command sent to a remote
power supply.

This is the big hammer approach to I/O fencing. It is
most often used by quorate clusters, since once the clus-
ter membership is categorically established, it’s a sim-
ple matter to power off those nodes who are not current
members. Stonith is much less appropriate to resource
driven clusters, since they often don’t have sufficient in-
formation to know that a node should be powered off.

The main disadvantage inherent in stonith devices is
that the situation in a split brain situation caused by gen-
uine communications path failure, then the communica-
tion path to the remote power supply used to implement
stonith is also likely to be disrupted.

6.2 Data based Fencing

Instead of trying to kill any nodes that should not be par-
ticipating in the cluster, Data Fencing attempts to restrict
access to the necessary data resources so that only the
node legitimately running the service gets access to the
data (all others being locked out)

Data based fencing gives a much more fine grained
approach to data integrity (and one that is much better

suited to resource driven clusters). Fencing is most of-
ten implemented as a lock placed on the storage itself
(via SCSI reservations or via a volume manager using
a special data area on storage). This means that if the
node can get access to the data, it can also be aware of
the locking.

The disadvantage to data based fencing is that it can-
not be implemented in the absence of a storage mecha-
nism that supports it (which occurs when the storage is
replicated).

7 Conclusion
You can get a long way toward High Availability sim-
ply by taking steps to lengthen uptime. However, this
doesn’t protect against unplanned outages, so automa-
tion in the form of a HA harness is a prerequisite for
this.

Knowing the right questions to ask when choosing a
HA harness is often more important than the choice it-
self because it gives you a fuller understanding of the
limitations of the system you will be implementing.

A Linux Cluster Products
Here we briefly summarise the major clustering products
on Linux and their capabilities

A.1 SteelEye LifeKeeper
Closed Source, Resource driven cluster, scales to 32
nodes, includes active monitoring and local recovery.
Uses SCSI reservations for Data Based fencing and also
has support for Stonith Devices. Uses open source ker-
nel modifications for HA NFS and data replication only
(absent the requirement for these features, LifeKeeper
will run on an unmodified Linux kernel). Supports repli-
cation usingmd/nbd .

http://www.steeleye.com

A.2 Veritas Cluster Server
Closed Source, Resource driven cluster, scales to 32
nodes, includes active monitoring and local recovery.
Uses SCSI reservations or the Veritas Volume Manager
for Data based fencing. Uses closed source kernel mod-
ules (which are only available for certain versions of Red
Hat) for SCSI reservations and Cluster Communication.
Cluster server will only run on a kernel with proprietary
modifications. No support for replication on Linux5.

http://www.veritas.com/Products/
van?c=product&refId=20

A.3 Red Hat Cluster Manager
Open Source, Quorate cluster, scales to 6 nodes, limited
active monitoring, no local recovery. Uses stonith de-
vices for Node fencing. Uses open source kernel modifi-



cations (which are integrated into Red Hat Kernels only)
to support HA NFS. No support for replication.

http://www.redhat.com/software/rha/
cluster/manager/

A.4 Failsafe
Open Source, Quorate cluster, scales to 32 nodes, full
active monitoring and local recovery. Uses stonith de-
vices for Node fencing. Project has not been updated for
a while. No support for replication.

http://oss.sgi.com/projects/
failsafe/

A.5 Heartbeat
Currently Two node only. Uses other available compo-
nents for active monitoring and local recovery. Uses
stonith devices for Node fencing. Supports replication
usingdrbd .

http://www.linux-ha.org

Notes
1. Often this excludesplanneddowntime

2. A framework for multiple paths to storage in the 2.6
kernel has been proposed, but so far there have been no
implementors

3. “When I use a word”, Humpty Dumpty said, in a
rather scornful tone “it means just what I choose it to
mean—neither more nor less.”[8]

4. although the increased probability of failure of such
hardware increases the probability of an unrecoverable
“double fault” where both nodes in a two node cluster
are down at the same time because of hardware failure.

5. Replication is available with the Veritas Cluster
Server on non-Linux platforms.

References
[1] Gregory F. PfisterIn Search Of Clusters, 1998,

Prentice Hall.

[2] Matthew Merzbacher and Dan Patterson,Measur-
ing end-user availability on the Web: Practical
experience, Proceedings of the International Per-
formance and Dependability Symposium (IPDS),
June 2002, http://roc.cs.berkeley.
edu/papers/Merzbacher%20-%
20Measuring%20Availability.pdf

[3] Digital Equipment Corporation,OpenVMS Clus-
ters HandbooK, Dcoument EC–H220793, 1993

[4] D. A. Patterson, G. A. Gibson, R. H. Katz
A Case for Redundant Arrays of Inexpensive

Disks (RAID) Proceedings of the International
Conference on Management of Data (SIGMOD),
June 1988, http://www-2.cs.cmu.edu/
˜garth/RAIDpaper/Patterson88.pdf

[5] Open Source Development Lab,Carrier Grade
Linux Requirements Definition, version 2.0,
Chapter 6, http://www.osdl.org/lab_
activities/carrier_grade_linux

[6] J. E. J. Bottomley and P. R. Clements,High Avail-
ability Data Replication, Proceedings of the Ot-
tawa Linux Symposium (2003) pp. 119–126

[7] Philipp Rensner,DRBD, http://www.drbd.
org

[8] Lewis Carroll Alice Through the Looking Glass,
1872 http://www.cs.indiana.edu/
metastuff/looking/lookingdir.html


