
Git, Quilt and other Kernel Maintenance

Tools

James Bottomley

SteelEye Technology

4 September 2007

1



Introduction

• Talk based on “unconference” presentation at

FreedomHEC in Los Angeles

• Will mainly cover git (quilt is very simple)

• Git is huge, so will not cover all of git, so ask if you

want to know something

2



Brief History of Git

• Source control began in Linux as the need to manage

patch inputs efficiently

– Before, Linus revewed every patch

– After, only subsystem maintainers review patches

that go via subsystem trees

– => scaling.

• After SCO it continued as the need to track

contributions

• Initial tool for this was Bitkeeper.

3



Bitkeeper

• Fully distributed nicely scaleable non master based

source tree management system

• Initial use for Linux was early in 2002

• Final rupture was in 2005

• Bitkeeper worked extremely well for those three years in

spite of the complaints about its being proprietary.

4



Developer Certificate of Origin

• Introduced in response to SCO suite

• Forced by need to know origins of patch added to kernel

• Signed-off-by means I know where the patch came

from (at least as far back as the previous signoff)

• Acked-by means something different.

5



Origins of Git

• 2.6.12-rc2 was the last Bitkeeper release.

• After that, a large slew of kernel developers began

developing git.

• Concepts were based on distributed source control

learned from Bitkeeper

• But were corrected for perceived mistakes Bitkeeper

made.

6



Basic Concepts

• Git is a tree tracking tool, not a change tracking tool.

• Fundamental objects in Git are trees joined by commits.

Head

7



The problems begin

• If Trees are the object, there are many files that remain

the same between commits

• This would involve horrible duplication (multiple copies

of the same file)

• Solution is to make git Content Accessible

• Every object is named and indexed by its content (sha1

hash)

8



Tracking trees and Content

• Renames now easy ... tree name changes but sha1

remains the same

• However, lack of change information between commits

makes it very hard to track renames, adds and deletes.

• Easy if file contents don’t change, but if they do can

only do probability analysis to establish the rename.

• Fundamental principle of git: Making things happen is

very easy; Finding what changed it much harder

– Classic example is which commits touched this file.

9



Heads in Git

• Any given commit has one (or more) parents

• This forms a tree.

• The root commit is the only one that has no parent

• However, your current work is usually at the head of

the tree.

• So, need pointer to the current working head of the

tree

• refs/heads is where this is stored

• The head is automatically advanced as commits are

made

10



Branches in Git

• Very simple.

• Every commit is a potential branch

• Git keeps track of branches via tree heads

• Git also keeps an idea of the curent working branch

(what’s checked out)

• Because git is content accessible, could store every git

tree for every project in the same repository

– As long as you remember where the heads are

11



Merging

• Since git has no special weave based file formats

• or any requirement to track changes at all

• Merging occurs simply when a commit has more than

one parent

• There’s no prescription of the merging algorithm at all

• At the moment, git uses a pluggable set for finding the

best merge

12



Git Commands

Clone

Blame
bisect

apply add
rm mv revert
format−patch

commit

applymbox

show

diff

log

init

Checkout

Branch

Fetch

Pull cherry

cherry−pick

rebase

13



Quilt

• Much simpler

• is basically a code base and a series of patches

• is designed to apply and remove these patches

• no concept of immutable history (history is the series

file, which can be changed easily)

14


