
High Availability Data Replication

James Bottomley

and

Paul Clements

SteelEye Technology

24 July 2003

1

What is Replication and What are its Uses?

• Replication is the ability to duplicate data in real time

across a network.

• The characteristics of this replication usually determine

its use.

• It has two primary uses:

– Replace expensive shared storage in cheap local

clusters.

– Provide disaster recovery capabilities for existing

installations.

• These two uses may be characterised roughly as the

extremes of the market.

2

Replication Characteristics

• The primary determining factors for replication

characteristics are network latency and bandwidth.

• In a low latency, high bandwith (i.e. essentially a LAN

or MAN), the replication is usually

– Synchronous: data isn’t reported to the application

as being committed until it has made it to the disc

surface on both the primary and its replica.

– This provides a high degree of data integrity

because the replica is an exact mirror of the primary

if a recovery has to be done (i.e. no data is lost).

• this is local replication for shared storage replacement.

3

Replication Characteristics Continued

• In a high latency, low bandwidth environment (i.e.

essentially a WAN), the replication is usually:

– Asynchronous: data is reported to the application

as being committed when it reaches the surface of

the primary only. It may still be in-flight to the

secondary.

– This still provides data integrity, but doesn’t

guarantee not to lose data on a failure.

– the lost data usually represents the last few in-flight

transactions.

• This is the disaster recovery scenario, which is primarily

what this talk will cover.

4

Asynchronous Replication

• The distance in bytes between the primary and the

replica is called the “high water mark” of the

replication.

• If replication is to be asynchronous, how high should

the “high water mark” be?

• for Disaster recovery, the question becomes “How

much data can you afford to lose?”

• Another obvious calculation is to multiply the

bandwidth by the latency to get the “pipe capacity”.

This is the amount of data that can be held in the pipe

without having to have a cache on the primary.

5

Asynchronous Replication Continued

• However, when the mark is reached, the data is not

allowed to be committed to the primary until some data

has made it to the secondary, thus slowing operations.

• Therefore, an additional cache on the primary may be

desirable.

• The only required characteristic of the cache and the

network pipe should be that they strictly preserve the

order of the I/O blocks (thus automatically preserving

the integrity of any underlying transactions).

6

What Happens when the Network Connection

is Lost?

• Once the link breaks, the mirror is also broken—the

primary operates independently as a single disc without

regard to the secondary.

• When the connection is restored, the data must be

resynchronized.

• Obvious simple way is to send all the data from the

primary.

• Can speed this by compression, or simple mechanisms

to recognise empty blocks.

• Can also compare block md5sums or secure hashes

over the network to see if they differ.

7

Total Replay

• This is slow, cumbersome and may even be impractical

for gigabytes of data over a narrow WAN.

• Other obvious problem is that the replay is done

without regard to the transactions in the data (usually

just sweep up the volume from beginning to end).

• Thus, the replica is corrupted until this replay is

finished.

• If this is a Disaster Recovery scenario, you are

completely unprotected while replay is going on. If

something happens to the primary, you just lost

everything.

8

Minimizing Replay or Eliminating Corruption

Entirely

• If you make a log of the changes while you’re

disconnected from the secondary, you then need replay

only the changes when communication is restored.

• Such fall broadly into two distinct types:

– Transaction logs: The actual data in the change is

recorded in order.

– Intent logs: Only the location of changed sectors is

recorded, not the actual details of the change itself.

• Each type of log has useful characteristics and provides

different benefits and disadvantages.

9

Transaction Logs

• Since these contain all the data, they may grow huge

(and without bound) as the changes to the primary

continue.

• Therefore, for prolonged outages, the transaction log

will overflow available storage.

• However, on restoration of connection, since the

transactions are ordered in the log, replaying the log

brings the replica up to date without it’s ever being

corrupt.

• If you are doing Asynchronous replication, the

transaction log may form part of the primary data

cache.

10

Transaction Logs Continued

• Thus to write data, you write only into the cache for it

to be committed (i.e. single write of data).

• You have back end daemons writing data from the

transaction log (separately) to the real storage on the

primary and to the remote replica.

• The “high water mark” is still the distance between the

replica and the beginning of the log.

• An entry may be erased from the log when it is sent to

both the primary and the replica.

• Thus, the critical write path is to get the data into the

log only.

11

Transaction Logs Contined

Write to
Primary

Write to
Secondary

Back end daemon

Transaction Log

CompletionWrite

12

Intent Logs

• Usually, you divide the device up into “chunks”.

• Each chunk being a multiple of the underlying block

size.

• Every chunk gets a bit in the transaction log to

indicate whether it is dirty (needs to be sent to the

replica) or not.

• since the log is just a bitmap covering the device, it is

usually pretty small, and a fixed size (i.e. never

overflows).

• However, the log contains no transaction

implementation, and thus, the replica is still corrupt as

the intent log is replayed.

13

Intent Logs Continued

• The write path for an intent log involves two strictly

ordered writes:

– The first to set the dirty bit in the log.

– The second to write the data to the primary.

• This seems to give a significant disadvantage in the

write critical path.

• However, if the log entry is already dirty, this reduces

to a single write (like the transaction log case).

• Thus, it pays an intent log deliberately to avoid

cleaning up dirty bits after the data has been

committed to the replica.

• Ideally, you simply want the data hot spots to remain

dirty.

14

Fixing Transaction Log Overflow

• One of the chief disadvantages of the transaction log is

overflow on prolonged disconnect.

• This can be fixed by using a “hybrid” log approach:

– The log begins normally as a transaction log

– on disconnect it continues as a transaction log until

it approaches the overflow point

– at this point, the primary is paused and the log is

converted to an intent log

– it continues as an intent log until connection to the

secondary is restored

15

Log Volatility

• A volatile log may be stored in memory. A non-volatile

log must be stored somewhere permanently.

• A transaction log, if it is used as part of the primary

data cache, is required to be non-volatile (you must

not lose it if the primary crashes, otherwise you lose

transactions from the primary.

• An intent log is not required to be non-volatile to

preserve primary transactions, but may usefully prevent

full replay to the secondary in the event of a primary

crash if it is non-volatile.

• Thus for disaster recovery scenarios non-volatility of

the log is a requirement.

16

Stretch Clusters

• This is a marketing buzzword.
Large Distance (hundreds of Miles)

Local HA Cluster
Disaster Recovery Site

High

Disk

Speed

17

Stretch Clusters Continued

• It means a local HA cluster where the application is

– protected locally in the cluster but also

– backed up remotely via replication to provide

disaster recovery.

• Key point is that as the application undergoes local

recovery within the cluster, the replication must follow

the application.

• This requires a non-volatile log.

18

Other Issues: recovery after initial failure

• Once the Application has failed and been recovered

onto the replica, one of the key problems is how to

transfer it back to the primary without incurring a huge

replication replay.

• Can log all the data on the secondary, but still won’t

know what differs on the primary because of lost

in-flight transactions.

• If you’re using an intent log, may replay from the

secondary the union (or) of the primary and secondary

intent logs to guarantee data integrity.

• doesn’t work for a transaction log, but could convert

both to intent logs before replay

19

Available replicators for Linux

• Excluding proprietary solutions, there are two public

domain replicators:

• drbd: by Phillip Reisner; is a complete system, includes

an in-memory (i.e. volatile) intent log.

– Main problem is lack of robustness, but various

organisations are working on this

• raid1/nbd: May set up remote leg of a standard raid1

mirror using nbd.

– Today, no intent log

– however, is more robust because most of the

internals are in raid1 and are shared with local

mirroring (i.e. wider testing pool).

20

Enhancing raid1/nbd

• Goal is to add non-volatile intent logging to md itself.

• Then make use of it in the raid1/nbd configuration for

disaster recovery.

• Key advantage is that logging becomes available to

(and tested by) all users of md with redundancy.

• Effectively a project of mutual advantage.

• Starting point is the raid1 logging code by Peter Breuer

(originally this was for volatile intent logging of raid1

only).

21

Why raid1/nbd?

• Essentially because we previously picked this for the

SteelEye local replication product.

• We have two years experience finding and fixing bugs in

this, so we’ve actively been ensuring that it is robust.

• Also, we know the code, so development goes faster

with a familiar system.

• A good side benefit is that the work may be useful to

more than just replication (well, logging at least,

asynchronous mirroring is probably only useful to

replication).

22

raid1/nbd setup

/dev/sda1

/dev/md0 raid1 device

local disk
network

block device /dev/sda1 local disk/dev/nb0

 Replication Source Replication Target

23

Adding intent logging

• Intent logging is the simplest form of log, thus it makes

for the easiest addition.

• Clearing the intent log is done asynchronously by a

kernel thread.

– on-disk representation is a bitmap with a single bit

per chunk (with set being dirty).

– This introduces a tuneable clearing delay to permit

the device to get into its optimized working set.

• We also have an in-memory map with a counter per

chunk.

– A counter is required because the on-disk bitmap

may only be cleared when all outstanding writes to

the chunk have completed.

24

In-Memory Log

• The counter is sixteen bits wide (you’d have to have a

huge clearing delay to overflow this).

• The memory used by the in-memory log is allocated

lazily using a two level model.

• A page of counters (2048) is assigned to a superchunk.

• A superchunk may be either a pointer to page of chunk

counters or a counter itself for the superchunk.

• Initially only space for the superchunks is allocated (for

a 4kb underlying block size, one page of superchunks

covers 8MB of disk space).

• chunk pages are allocated and deallocated on the fly.

Even if the allocation fails, the system may still

continue using the superchunk counter.

25

Assigning Counters to Blocks
Disk

Chunk

Block
Block

Block

Block
Chunk

Counter
Counter

Counters

High level counters

Page of Counters

26

Non-Volatile Intent Log

• Non-Volatile log is simply a file in the filesystem.

• As soon as counter increments, the chunk must be

marked dirty in the log.

• The log may be cleaned as soon as the count drops to

zero

• However, we delay the log cleaning in the hope that

we’ll get another I/O to that chunk.

• Clearing is done by a back end kernel thread

– simple algorithm: sweep over every five minutes and

clear all the necessary bits.

– Could make this more intelligent (something like

LRU clearing for the bits instead of simple clearing).

27

Asynchronous Replication

• This is very easy. You simply have a global counter for

the in-flight chunks.

• Maximum possible value is set so that per-chunk

counter cannot overflow (i.e. 65535 for 16 bit

counters).

• This rule keeps the two-level counters working correctly

at all times

– you know that the sum of the counters in a page

cannot overflow 16 bits

28

Intelligent Switch Back

• Since intent logs are simple files, when the primary

comes back you can locate the old primary log

• From user space, you can combine (or operation) the

primary and replica logs.

• Once the combination is complete you can replay from

the primary to the secondary using the combined log

(simply bring the mirror up with this log).

• All of this is done from user space—no kernel help

required.

29

Conclusions

• Asynchronous and Non-Volatile intent logging is

eminently doable and makes possible both cheap HA

clustering and Disaster Recovery.

• The code should be going across the linux-raid mailing

list “any day now”.

• Code is all open sourced and will be usable in any

HA/DR project.

30

