High Availability Data Replication

Paul Clements

SteelEye Technology, Inc.

http://www.steeleye.com/

paul.clements@steeleye.com

James E.J. Bottomley

SteelEye Technology, Inc.

http://www.steeleye.com/

james.bottomley@steeleye.com

Abstract

This paper will identify some problems
that were encountered while implementing
a highly available data replication solution
on top of existing Linux kernel drivers. It
will also discuss future plans for implement-
ing asynchronous replication and intent log-
ging (which are requirements for performing
disaster recovery over a WAN) in the Linux
kernel.

1 Introduction

The first part of this paper (Section 2) will
discuss some issues in the 2.2 and 2.4 Linux
kernels that had to be overcome in order to
implement a replication solution using raidl
over nbd.

The second part of the paper (Section 3) will
present future plans for implementing asyn-
chronous replication and intent logging in

the md and raidl drivers.

2 Fixing the existing problems

We’ve done considerable work over the past
3 years testing, debugging, and finally fixing
several problems in the md, raidl, and nbd
drivers of the Linux kernel. We ran into sev-
eral bugs in these drivers, primarily due to
the fact that we're using them in an unusual
fashion, with one of the underlying disk de-
vices of the raidl mirror being accessed over
the network, via a network block device (see
Figure 1). Our usage of raidl in conjunction
with nbd led to the increased occurrence
of several race conditions and also caused
the error handling code of the drivers to be
stressed much more than a normal, internal
disk only, raidl setup.

The following is a brief summary of some of
the problems we’ve uncovered and solved:

e climinating md retries in order to avoid

/devindo | raidl device

/devisdal |localdisk | /dev/nbo

Replication Source

/ dev/ sdal

. network
' block device

local disk

Replication Target

Figure 1: Data replication using raidl over nbd

massive stalls when a device (in our
case, a network device) fails

e correcting SMP locking errors and al-
lowing an nbd connection to be cleanly
aborted when problems are encountered

e fixing various bugs in the raidl driver:
— mistakes in the error handling
code
— incorrect SMP locking
— IRQ enabling/disabling bugs

— non-atomic memory allocations in
critical regions

— block number “off by one” error!

At the time of this writing, patches for all
of these problems have been accepted into

!This problem was actually corrected by Neil
Brown after our initial bug report to him.

the latest releases of the mainline 2.4 and
2.5 kernel series. For information about
all of SteelEye’s open source patches or to
download the source code for the patches,
visit the SteelEye Technology Open Source
Website[1].

2.1 Eliminating md retries

This was one of the first problems that we
encountered back in the fall of 2000. At
the time, we were working with the 2.2
Linux kernel. The md resynchronization
code (md_do_sync()) was written, at the
time, to always retry any failed 1/O (read
or write) no less than 4096 times!”> On a
network failure, this caused raidl and nbd
to spin in tight loops for several seconds,
hanging the entire system. Our stopgap so-

2PAGE_SIZE#* (1<<1)*2/sizeof (struct
buffer head *) (md.c, c. 2.2.16 kernel)

lution (read, hack) was to strategically in-
sert schedule calls into the error handling
code of those drivers®. Needless to say, the
md resynchronization code got a major over-
haul before the 2.4 kernel was released and
this issue was fixed.

2.2 Allowing nbd connections to be
aborted

After initially fixing a few trivial bugs in nbd
having to do with missing or incorrect spin
lock calls, we realized that we could not af-
ford to wait for TCP socket timeouts when
we needed to abort a network connection, or
when the network went down. We needed
to have the ability to terminate nbd connec-
tions at will, so that our high availability
services could have complete control over the
data replication process. To fix this, we un-
blocked SIGKILL during the network trans-
mission phase of nbd so that we could send
a signal from user space to terminate an nbd
connection. We also needed to add code to
ensure that nbd’s request queue was cleared
and all outstanding 1/Os were marked as
failed when a connection was terminated.

Our patches for nbd have been accepted into
the mainline 2.5 kernel (c. 2.5.50) and were
backported and accepted into the 2.4 kernel
(c. 2.4.20-pre).

2.3 Fixing various bugs in the raidl
driver

The raid1 driver, by far, has been the biggest
thorn in our side...we’ve made many fixes to

3we did not have the option of modifying md,
since it is compiled into the kernel in most Linux
distributions, and we did not want to be in the busi-
ness of distributing entire rebuilt kernels

raidl over the past few years in order to in-
crease its robustness. Neil Brown has simul-
taneously been performing a lot of cleanup
and bugfix work in the md and raidl drivers
that was beneficial to our cause.

The first set of problems that we ran into
with raidl were related to handling failures
of the underlying devices. Since we use nbd
underneath raidl, device “failures” are quite
a common occurrence (e.g., when the net-
work goes down). To correct the problems,
we added code to detect device failures dur-
ing resync and during normal 1/O opera-
tions. The additional code correctly marks
the device “bad”, fails all outstanding I/Os,
and aborts resync activities, if necessary.

After fixing this initial set of problems, we
were able to stress the raidl driver much
more heavily than we previously had been
able to (without it falling over dead). Un-
fortunately, this heavier stress uncovered a
whole raft of new problems. We were able,
however, to eventually pin-point and solve
each of these new problems. Many of them
turned out to be fairly common kernel pro-
gramming errors, such as:

e “nested” spin_lock_irq calls — Fail-
ure to use the save and restore ver-
sions of the spin lock macros with
nested calls (i.e., spin_lock_irq called
while another spin_lock_irq was al-
ready in force) leads to the CPU flags
being improperly set. This means that
interrupts were enabled at inappropri-
ate times, causing deadlocks to occur.
The rule of thumb here is that it’s best
to avoid nesting spin locks whenever
possible, and to always use the irgsave
and irqrestore versions of the macros,
instead of the simple irq versions, if
deadlocks are a concern.

e sleeping with a spin lock held —
There were cases where the driver was
doing non-atomic memory allocations
or calling schedule with a spin lock
held, which caused deadlocks to oc-
cur. To avoid the deadlocks, the code
was rearranged so that a spin lock was
never held while calling schedule and
a few kmalloc calls were changed to
use the GFP_ATOMIC flag rather than the
GFP_KERNEL flag.

e “off by one” error — This was a sim-
ple case of differing block sizes being
used in the md and raidl drivers re-
sulting in one of the block counts used
in the resync code being shifted in-
correctly. This bug caused resyncs to
hang, leaving the raid device in an un-
usable state.

Our patches for raidl have been accepted
into the Red Hat Advanced Server 2.1 ker-
nel (2.4.9-ac based) and an alternate version
of the fixes (authored by Neil Brown) has
been accepted into the mainline 2.4 kernel
(c. 2.4.19-pre). The raidl driver in the 2.5
kernel is not believed to suffer from any of
the aforementioned problems.

3 Future enhancements

We are planning to enhance the md and
raidl drivers of the Linux kernel to sup-
port asynchronous data replication and in-
tent logging. Our strategy for implementing
these changes will be to place the bulk of the
code into the md driver, in a manner that
will allow all the underlying raid drivers to
take advantage of it. We will also add the
necessary code to raidl to call the md driver

hooks.

We plan to leverage some of the implemen-
tation and design of Peter T. Breuer’'s fr1
code[2], which was recently published[3].
The fr1 driver implements intent logging
and asynchronous replication as an add-on
to the raidl driver. We will make the fol-
lowing, additional changes to the fr1 code,
to produce a final solution:

e disk backing for the bitmap (intent log)

e addition of a daemon to asynchronously
clear the on-disk bitmap

e conversion of single bits to 16-bit block
counters (to track pending writes to a
given block, so as not to prematurely
clear a bitmap bit on disk)

e allow rescaling of the bitmap (i.e., allow
one bit to represent various block sizes
— the current code is restricted to one
bit per 1024-byte data block only)

e make the code fully leveragable by all
the raid personality drivers

e add some additional configuration in-
terfaces for the new features

3.1 Intent Logging

In a data replication system, an intent log
is used to keep track of which data blocks
are out of sync between the primary device
and the backup device. An intent log is sim-
ply a bitmap, in which a set bit (1) repre-
sents a data block that is out of sync, and a
cleared bit (0) represents a data block that
is in sync. The use of an intent log obvi-
ates the full resync that is normally required
upon recovery of an array.

shadow bit

block counter

memory

disk

Figure 2: In-memory and on-disk bitmap layout

3.1.1 Bitmap Layout

We will store the bitmap both in memory
and on disk, in order to be able to with-
stand failures (or reboots) of the primary
server without losing resynchronization sta-
tus information.

We will use a simple, one-bit-per-block
bitmap for the on-disk representation of the
intent log, while the in-memory representa-
tion will be slightly more complex. The rea-
son for this additional complexity is the need
to track pending writes, so as not to clear a
bit in the bitmap until all pending writes
for that data block have completed*. The
write tracking will be handled using a 16-bit
counter for each data block. One bit in the
counter will actually be used as a “shadow”
of the corresponding on-disk bit, reducing
the usable counter size by one bit (see Figure
2). The counter will be incremented when
a write begins and decremented when one
has completed. Only when the counter has
reached zero, can the on-disk bit be cleared.

4clearing the bit prematurely could result in data
corruption on the backup device if a network failure
coincides

In order to conserve RAM, the in-memory
bitmap will be constructed in a two-level
fashion, with memory pages being allocated
and deallocated on demand (see Figure 3).
This allows us to allocate only as much
memory as is needed to hold the set bits
in the bitmap. As a fail-safe mechanism,
when a page cannot be allocated, the (pre-
allocated) pointer for that page will actu-
ally be hijacked and used as a counter itself.
This will allow logging to continue, albeit
with less granularity®, during periods of ex-
treme memory pressure.

The bitmap will also be designed so that it
is possible to readjust the size of the data
“chunks” that the bits represent. This will
be handled by translating from the default
md driver I/O block size of 1KB to the
chunk size, whenever the bitmap is marked
or cleared. So, with a chunk size of 64KB,
for example, the /O to 64 contiguous disk
blocks will be tracked by a single bit in the
on-disk bitmap (and the corresponding in-
memory counter).

5on x86, with 32-bit pointers and 4KB pages, the
granularity is reduced to roughly 1/1000 the normal
level

‘ ‘ page pointers (pre—allocated)

pages (allocated on demand)

Figure 3: Two-level, demand-allocated bitmap

3.1.2 Bitmap Manipulation

To make use of the bitmap, we will make
modifications to two areas of the raidl
driver:

1. Ordinary write operations will re-
quire a bitmap entry be made (and
synced to disk) before the actual data
is written — the bitmap entry will be
cleared once the data has been written
to the backup device.

2. Resynchronization operations will
no longer involve a full resynchroniza-
tion of the backup device, but rather
a resync of just the “dirty” blocks (as
indicated by the bitmap).

3.1.3 Write Operations

The sequence of events to write block n on a
raidl device with an intent log is as follows:

1. set the nth shadow bit in the in-memory
bitmap and increment the counter for
block n (both can be done as a sin-
gle operation since the shadow bit and
counter are contiguous)

2. increment the “outstanding write re-
quest” counter for the array® (and dis-
allow further writes to the device if
the counter has exceeded the configured
limit)

3. sync the shadow bit to disk, if the on-
disk bit was not already set

4. duplicate the write request, including
its data buffer

5. queue the write request to the primary
device

6. queue the duplicate request to the
backup device

We then allow the writes to complete
asynchronously. After each write is com-
pleted, the raidl driver is notified with
a call to its b_end io callback function
(raidl_end request). This function is re-
sponsible for signalling the completion of
I/O back to its initiator. In synchronous
mode, we wait until the writes to both the
primary and backup devices have completed
before acknowledging the write as complete.

6This counter is really only used when the ar-
ray is in asynchronous replication mode. For more
details, see Section 3.2.

In asynchronous mode, the write is acknowl-
edged as soon as the data is written to the
primary device.

After the write has been acknowledged, the
callback function is responsible for decre-
menting the block counter and, if the
counter’s value is 0, clearing the shadow
bit in the in-memory bitmap. Whenever a
shadow bit is cleared, a request will also be
placed in a queue to indicate that the on-
disk bit needs to be cleared.

The bits in the on-disk bitmap will be
cleared asynchronously, by a dedicated ker-
nel daemon, mdflushd. The daemon will
periodically awaken and flush all the queued
updates to disk’. The interval at which the
daemon will awaken and flush its queue will
be tunable (with a default value of 5 sec-
onds).

Clearing the bits in the on-disk bitmap in
a lazy manner will help to reduce the num-
ber of disk writes, and will also ensure that
any bits that happen to correspond to I/O
“hotspots”® will simply remain dirty, rather
than causing a constant stream of writes to
the on-disk bitmap.

3.1.4 Resynchronization Operations

The resynchronization process of the md
driver is fairly straightforward. Following
recovery from a failure, the driver will at-
tempt a complete resync of the backup de-
vice. We will modify this process slightly, so
that for each data block that is to be resyn-

Tunless the shadow bit has been reset in the
meantime, in which case the update is simply dis-
carded and the on-disk bit is left set

8areas of the disk that are continually written,
such as an ext3 filesystem journal

chronized, we will first check the appropri-
ate shadow bit in the in-memory bitmap and
then, either:

e resync the block (if the bit is set), or

e discard the resync request and indicate
success (if the bit is cleared)

Once a block has been resynced, its shadow
bit will be cleared and its block counter ze-
roed. An update request will then be queued
to tell mdflushd that the on-disk bit should
be cleared.

3.2 Asynchronous Replication

In an asynchronous replication system, write
requests to a mirror device are acknowledged
as soon as the data is written to the primary
device in the mirror. In contrast, in a syn-
chronous replication system, writes are not
acknowledged until the data has been writ-
ten to all components of the mirror. Syn-
chronous replication works well in environ-
ments where the mirror components are lo-
cal. However, when the backup device is lo-
cated on a network, the write throughput of
a synchronous mirror decreases as network
latency increases. An asynchronous mirror
does not suffer this performance degradation
since a write operation can be completed
without waiting for the write request and
its acknowledgement to make a complete
roundtrip over the network. To achieve rea-
sonable write throughput in a WAN replica-
tion environment, an asynchronous mirror is
generally employed.

3.2.1 Outstanding Write
Limit

Request

In an asynchronous mirror, there can be
several outstanding (i.e., in-flight) write re-
quests at any given time. In order to limit
the amount of data that is out of sync on
the backup device during normal mirror op-
eration, it is necessary to keep the num-
ber of outstanding write requests fairly low.
Therefore, we will place a limit on the num-
ber of outstanding write requests. How-
ever, to avoid degrading the write through-
put of the mirror, this limit must be ade-
quately high. Since the limit will need to be
tuned appropriately for each environment,
it will be made a user configurable parame-
ter?. When the limit for outstanding writes
has been exceeded, the driver will throttle
writes to the mirror until another write ac-
knowledgement returns from the remote sys-
tem (i.e., the mirror will degrade to syn-
chronous write mode). A message will be
printed in the system log when this event
occurs, to warn system administrators that
they should adjust the relevant parameters.
The outstanding write request limit will de-
fault to a reasonable value (which will be
determined through testing).

3.2.2 Device Tagging

In synchronous replication mode, there is
no real need to differentiate between pri-
mary and backup devices, since writes must
be committed to all array components be-
fore being acknowledged. However, in asyn-
chronous mode, the component devices of

9To avoid overflowing the block counters in the
in-memory bitmap, we will make it impossible to set
this limit higher than the maximum value for those
counters.

a raidl array will need to be tagged as
“primary” or “backup” to ensure that the
bitmap is handled correctly, and to ensure
that read requests are always satisfied from
the primary device. To accomplish this, we
will need an additional /etc/raidtab direc-
tive to enable a device to be tagged as a
“backup”. Devices tagged as backups will
be placed into a special “write-only” mode
that exists in md.

4 Conclusion

With the recent bugfix and cleanup work
that has been done, and with the upcom-
ing additional features that are in the works,
the Linux kernel md driver will finally be
an enterprise-class software RAID and data
replication solution: robust, and capable
of being used for many different applica-
tions, from simple internal disk mirroring
and striping, to LAN data replication, and
even disaster recovery over a WAN.

5 Acknowledgements

We would especially like to thank Peter T.
Breuer and Neil Brown for their outstand-
ing and ongoing work in the Software RAID
(md) subsystem of the Linux kernel. With-
out their contributions, we would not have
been able to undertake such a huge en-
deavor.

References

[1] SteelEye Technology, Inc.

SteelEye Technology — Open Source

Website
http://licensing.steeleye.com/open_source/

Peter T. Breuer

Fast Intelligent Software RAID1

Driver
http://www.it.uc3m.es/ptb/fr1/
http://freshmeat.net/projects/fr1/

Peter T. Breuer, Neil Brown, Ingo
Molnar, Paul Clements

linux-raid mailing list discussions on
ratdl bitmap and asynchronous writes
http://marc.theaimsgroup.com/
?71=1inux-raid&r=1&b=200302&w=2
Jan-Apr 2003

