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What Is Availability?

• Availability measures the ability of a given service to

operate.

– Defined as the fraction of time for which the service

you are exporting is available for use.

– So a service with 99.99% Availability must be down

for no more than 52 minutes per year.

– 99.999% is no more than 5 minutes and 15 seconds

per year.

• Usually, in any system, availability decreases as the

complexity increases.

• Any system which takes action to increase availability

beyond what would ordinarily be possible may be

termed Highly Available.
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Class of Nines

• When the availability is shown as a percentage (or just

as a decimal), the number of initial nines is called the

availability class of the service

• Thus, A = 0.9999 or 99.99% is an availability class of

four (or four nines)

• A = 0.99999 or 99.999% is an availability class of five (or

five nines).

• and so on.
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Determining Availability

• This is actually one of the really hard things to do.

• Uptime U is defined as the average time to a failure

• Downtime D is defined as the time between

experiencing the failure and getting the system working

again.

• Obviously, the Availability A becomes

A =
U

U + D

• But in order for this to be meaningful, you need to

know what U and D are in your environment
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Finding the Availability of Your Service

• Knowing what your Availability is and comparing this

against your service level requirements can be critical

to evaluating your need for High Availability.

• So how do you go about doing this?

• Manufacturers sometimes quote figures like

– Mean Time To Failure (MTTF) which is exactly

the same as the Uptime U .

– and Mean Time Between Failures (MTBF) Which is

U + D

• So we can easily plug the manufacturer supplied figures

into the availability equation?
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Finding the Availability of Your Service (2)

• No: the MTTF measures hardware uptime in a

specific environment; it doesn’t include things like

– power failures (electric company, or even someone

accidentally tripping over the server’s power cord),

– environmental damage (like the A/C unit floods the

lab),

– human error (the admin spills coffee on the server).

– or Software failure (the web server crashes).

• So whatever your Uptime is, it will be less than the

Quoted MTTF.

6



Finding the Availability of Your Service (3)

• Now the really big one, finding your Downtime:

– For simple failures, like the database crashing, your

admin can simply restart it, but how long does it

take?

– If the server has really failed, how long does it take

you to find another one and get it up and running?

– If you use a co-location service how long does it

take to get someone out there?

• The Downtime is really the biggest unknown in finding

your Availability.
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Clustering and High Availability

• The simplest way to improve the Availability of a

system is to have a duplicate waiting to take over if

anything goes wrong.

• This duplication describes the simplest form of

Active/Passive cluster.

• Here, the Down time of the Service is the Time it takes

the Passive node to detect the failure plus the time it

takes to recover the service.

• This is often termed the “Availability Equation” (but

more accurately, it is the downtime equation)

D = Tdetect + Trecover
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Clustering and High Availability (2)

• So, if you have a Service Level requirement, what a

cluster really does for you is quantify exactly the

Downtime D.

• Thus, it eliminates a huge quantity of uncertainty from

your enterprise.

• However, note that implementing cluster still doesn’t

give you any handle at all on your Uptime U .

• Therefore, you still cannot predict your Availability,

even with a cluster, unless you know your Uptime.

– All you’ve done is controlled your Downtime.

9



Clustering and High Availability (3)

• The reason clustering implementation is so important is

precisely because the cluster cannot control Uptime.

• The only way to control uptime is by careful

implementation and deployment of the cluster. This is

why things like:

– Hardware burn in,

– Redundancy in communications and storage,

– Multiple redundant power supplies,

– All the traditional uptime lengtheners

are still important in cluster deployment.
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Case Studies: Crashing Web server

• My web server currently crashes once a week, but I’m

going to implement clustering to give me a five nines

(99.999%) uptime.

• No, and here’s why:

– Webster crashing once a week give at most an

Uptime of a week.

– Suppose the cluster can reduce the downtime to,

say, ten seconds (five to detect and five to recover).

– That gives an overall availability of

7 × 24 × 60 × 60

(7 × 24 × 60 × 60) + 10
≈ 0.9999834

– or only 99.998% uptime (four nines).
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Morals from the Case Study

1. A cluster isn’t a silver bullet for solving all your

problems.

2. However, it can get you a significant fraction of the

way there

• Even in the example of an appalling one week

uptime, if the sysadmin takes ten minutes to notice

the problem and restart the server, that’s an

Availability of 99.90% (or three nines).

• Implementing clustering got you a whole order of

magnitude better.

3. You must clearly understand where your problems lie to

understand if a cluster solution can meet your

expectations.
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Users and Failure Tolerance

• Sometimes, Availability is a misleading measure, and

Downtime is the true quantity users care about.

– It’s all about perception.

• In the web server example: a regular user who

complains to the admin once a week to get the service

restarted regards the service level as unacceptable.

• However, if the cluster can restart it in ten seconds, he

only has time to notice the failure and click again to

get the service restored.

• A similar service glitch could be caused by the Internet

or DNS resolution or a host of other problems between

the user and the service, so the user will tolerate this

level of downtime.
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Five things to know before you start

• Do you currently have a service problem that you’re

trying to solve?

• What is the nature of the service you’re trying to

protect and how do its users react to outages?

• Do you care about absolute Availability, or is

controlling the Downtime sufficient?

• If you care about availability, can you accurately

measure your current uptime?

• For any given HA solution, can you estimate the

maximum Downtime it will give your applications

before you install it?
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Types of Clusters

• Clustering really falls broadly into three categories

– High Performance Computing (HPC). Cluster Many

machines together to get much higher processing

power than a single machine (e.g. Beowulf).

– High Availability (HA). Cluster machines together to

produce the availability of a set of services (e.g.

LifeKeeper, Heartbeat, Cman, etc.)

– Fault Tolerant (FT). Similar to HA but with much

more strict availability requirements

• and one that isn’t really a cluster at all, but is often

regarded as one

– Web server Farms
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P
er

fo
rm

an
ce

Availability

High Availability

High Performance Computing
(Beowulf)

Webserver Farms

(Fault Resilience)

Full Fault Tolerance

16



The Difference Between Fault Tolerance and

Fault Resilience

• The difference between these two terms indicates how

the users of the service see the failure and recovery.

• Fault Resilience: Means that users may notice some

disruption:

– Web users may see a transient failure to find the

page.

– Database users may see a single error committing a

transaction.

• Fault Tolerance: means that the users notice no

disruption in the service at all (although they may

notice a “pause” while recovery occurs).
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Shared Storage Clusters

Node 1 Node 2 • Two or more computers

connected by a shared

storage bus (either SPI

or FC).

• An external (and

redundant) array to

provide data to either

node.

• Not the only model: could also provide data availability

via replication
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Clusters and Fault Tolerance

• There’s no clustering technology available in the market

today that provides full fault tolerance for every service.

• Originally, full fault tolerance was achieved

– by running multiple copies of the application in a

cluster

– splitting inputs to go to each application

– comparing outputs to check for errors (should be

identical)

– if one server fails, the other instances keep the

service running exactly until there are none left.

• However, even in today’s clusters, some (but not all)

services are still fault tolerant.
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High Availability and Failover Clusters

• Most clusters on the market today are failover.

• This means that they require no changes to the

application to permit failover.

• Instead, they throw a harness around the application to

control restarting it on another server.

• This approach relies on the application being coded in

a crash resilient fashion, by:

– not keeping critical data in memory,

– placing all non-volatile data on permanent storage

in an atomic (or recoverable) fashion,

– ensuring that data is actually on permanent storage

before signalling completions back to the user.
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Fault Tolerance and Failover Clusters

• By and large, if the cluster relies on the crash resilience

of the application, it is not going to be fault tolerant

– primarily because uncommitted (and

unacknowledged) data may be lost requiring the

user to retransmit it.

– for example a row insert in a database table may be

returned with an error indicating the client should

try again.

– sometimes the user’s client will do the retry without

showing the failure to the user, giving the

perception of fault tolerance.

– but most of the time, the user’s application will

have to be coded to do the retry itself.
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Fault Tolerance and Failover Clusters (2)

• Some services which are truly stateless may be

recovered in a fault tolerant manner even in failover

clusters.

• The classic example is NFS

– designed by Sun with true statelessness built into

the protocol

– no persistent information about the client is

retained in the server process.

– If information (for example file writes) is lost, the

NFS client automatically retries.

• Of course, extra stateful protocols (like locking) are

layered on top of NFS which do cause fault tolerance

problems.
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Understanding the Consequences of Fault

Resilience

• First and foremost, are the problems it may cause on a

failover important to you (i.e. what will your users see

in the face of a failure)

– For web servers, usually the answer is “no”

– Users are trained to press “reload” if the web page

times out or comes back with a web server error.

– A web page that shows an internal error from the

database may be less welcome.

• Secondly, is there anything you can do in the way the

client application works to improve the user experience?

– Retry transient transaction errors automatically, for

instance.
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Important points

• Your need to know if the service you are protecting is

fault tolerant or fault resilient.

• If it is fault resilient, you need to understand:

– the impact of the failover to the service being

exported from the cluster

– The visibility of this impact to the external users of

the service.

• If you also control the client side of the service, you

should plan your implementation to take into account

service anomalies caused by failover.
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Monitoring

• Every cluster (without exception) provides the ability to

monitor health at a node level.

– so node failures may be spotted and corrected.

• some clusters also provide the ability to monitor

individual applications and even restart them locally if

they have failed.

– this is essential, because applications can fail more

often than the node (e.g. the web server crashes

every week example)

– Local recovery is important (because it can

decrease downtime and minimise disruption).
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Customising your Cluster Environment

• Cluster vendors try to provide off the shelf recovery

tools for typical applications

– web servers, databases, file exports (NFS or

SMB/CIFS) etc.

• However, in a complex environment you often have

custom applications that the cluster vendor won’t

support out of the box.

• In this case you need to know what options are

available to you to support your application

– does the cluster provide an easy way to protect and

monitor arbitrary applications?

– Does this come as an extra, or is it available with

the base product.
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Looking Beyond the Software

• As we learnt previously: a cluster helps you minimise

Downtime. It cannot help you with uptime.

• However, uptime is extremely important to availability.

• Thus, as well as implementing clustering to improve

Downtime, you should assess your cluster hardware for

ways to improve uptime.

• Key to this is eliminating Single Points of Failure

(SPOF).

– Cluster wide SPOFs must be eliminated entirely

– Individual Node SPOFs should be assessed to see if

eliminating them would improve uptime.
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Cluster Single Points of Failure

• In a shared storage cluster, the real SPOF is the

storage.

• Make sure that the external array is configured as a

RAID

• Not only that, but make sure it’s RAID 1 (mirroring)

– RAID 5 is cheaper, but in a double fault situation it

may end taking the array offline and corrupting

your data.

– RAID 1 preserves data integrity (but still takes the

array offline) in the double fault case.

• replication provides a cheap method of eliminating the

storage SPOF (separate copies of the data in each

node).
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Node Single Points Of Failure

• In the shared storage cluster, the first and most

obvious Node SPOF is the connection to storage.

• The next most common is the power supply (the

non-silicon components often burn out or fail).

• Almost equally common is the failure of mechanical

devices like Fans

– Particularly nasty in todays world of hotter, faster

and actively cooled CPUs

– For example, a top of the line P4 will overheat and

burn out in less than a second if its heat-sink fan

fails.
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Multi Path

• In the standard shared storage cluster, if a link to

storage fails, the application loses contact with the

data and the cluster must fail to another node that can

still access it.

Node 1 Node 2 • This happens

surprisingly often (cables

get trodden on, dust

gets into transceivers

etc.)

• Can obviously eliminate

this by having more

than one connection to

the storage per node

(called Multi-path).
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The Costs

• Replication is essentially free.

• External Storage arrays cost about $3,000+ (FC arrays

begin at about $5,000)

• Multi Path, starts at about $10,000 and the sky is the

limit for truly Rolls-Royce solutions.

• Redundant Power Supplies and Redundant Fans only

found in higher end servers (not as add on items to low

cost servers), will drive server costs up by $3-5,000.

31



Managing your Systems

• Systems management is integral to SPOF elimination

• It is no use at all to buy a fully redundant system and

then keep it in a cupboard and never monitor it.

– redundancy will protect you when the first failure

occurs.

– the second failure will take down your server (or

cluster if it’s in the shared array).

– maintaining and replacing failed redundant

components is essential to preserving uptime.

• if you have no way of monitoring your server’s

redundant components, you may just as well opt for

cheaper hardware and allow the cluster to manage the

Downtime instead.
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Choosing your Cluster

• Once you understand what you’re trying to achieve

(and what you might need to modify or alter to achieve

it)

• and you have identified either your availability or

Downtime goals

• you are ready to begin selecting an HA cluster product.

• Ideally, if you haven’t already purchased your hardware,

the cluster vendor should be able to guide you through

choosing this.

• if you do already have your hardware, make sure you

validate it with the cluster vendor first.
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Cluster Products For Linux

• LifeKeeper (http://www.steeleye.com) available on all

enterprise Linux distributions, no proprietary modules,

Resource Driven, Cross Platform.

• heartbeat (http://www.linux-ha.org) now shipped with

SLES10, Quorate.

• and FailSafe (was shipped with SLES, now defunct)

• Mission Critical (Shipped with RHEL3 and below, now

defunct), Quorate

• Cman (Shipped with RHEL 4)

• Veritas Cluster Server (requires proprietary modules,

limited distro support), Resource Driven
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Replication

• Clustering provides application Availablility

• Replication provides true distributed Data availability

• Replication maintains complete and up to date copies

of your data in multiple locations

– If these locations are separated by several miles (or

even several thousand miles) this gives true disaster

recovery.

• Replication is not true Continuous Data Protection
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Replication Products

• SteelEye Data Replication: Based on md/nbd, no out

of kernel modules, available in All distributions with

recent (2.6.14+) kernels (SLES10, RHEL5), intent log

based.

• drbd: requires out of kernel, but open source module,

intent log based

• Veritas SRL: requires proprietary kernel module,

relatively limited kernel support, transaction log based.
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How does Replication Work

• Replication can operate at three levels

– Application: SQL Replicatiors like that in MySQL

– Filesystem: No Linux Examples (too many

filesystems), Windows Replicators like XOSoft.

– Block level: drbd; md/nbd; Veritas SRL.

• Block level replication is the most generally useful

• Application level replication can be the most efficient

– because it understands the layout and meaning of

the data

– However, need separate replicator for every

application!
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The Basics of Replication

Data Replication

NODE 1 NODE 2

Primary

Primary Replica

Replica

WAN Cloud
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Replication Features

• Logs

– Transaction: Records both Data and Position

information

– Intent: Merely records unsynchronised blocks

• Synchronous replication

– Write is not reported as committed to the

application until the data is on both primary and

replica

– round trip latencies make this useful only in a LAN

environment
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Replication Features (2)

• Asynchronous replication

– Write is reported as committed when data is safely

on Primary Media only—Replica data may still be

in-flight

– Logging is a requirement to make asynchronous

replication crash proof

– transaction integrity is preserved by correct ordering

of the replica writes.

– Most useful feature is ability to free replication from

latency concerns and the ability to fully utilise the

available bandwidth of the network

– Ideally suited to WAN replication over large

distances.
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