
Achieving High Availability and Data

Protection with Linux

James Bottomley

SteelEye Technology

22 March 2007

1

What Is Availability?

• Availability measures the ability of a given service to

operate.

– Defined as the fraction of time for which the service

you are exporting is available for use.

– So a service with 99.99% Availability must be down

for no more than 52 minutes per year.

– 99.999% is no more than 5 minutes and 15 seconds

per year.

• Usually, in any system, availability decreases as the

complexity increases.

• Any system which takes action to increase availability

beyond what would ordinarily be possible may be

termed Highly Available.

2

Class of Nines

• When the availability is shown as a percentage (or just

as a decimal), the number of initial nines is called the

availability class of the service

• Thus, A = 0.9999 or 99.99% is an availability class of

four (or four nines)

• A = 0.99999 or 99.999% is an availability class of five (or

five nines).

• and so on.

3

Determining Availability

• This is actually one of the really hard things to do.

• Uptime U is defined as the average time to a failure

• Downtime D is defined as the time between

experiencing the failure and getting the system working

again.

• Obviously, the Availability A becomes

A =
U

U + D

• But in order for this to be meaningful, you need to

know what U and D are in your environment

4

Finding the Availability of Your Service

• Knowing what your Availability is and comparing this

against your service level requirements can be critical

to evaluating your need for High Availability.

• So how do you go about doing this?

• Manufacturers sometimes quote figures like

– Mean Time To Failure (MTTF) which is exactly

the same as the Uptime U .

– and Mean Time Between Failures (MTBF) Which is

U + D

• So we can easily plug the manufacturer supplied figures

into the availability equation?

5

Finding the Availability of Your Service (2)

• No: the MTTF measures hardware uptime in a

specific environment; it doesn’t include things like

– power failures (electric company, or even someone

accidentally tripping over the server’s power cord),

– environmental damage (like the A/C unit floods the

lab),

– human error (the admin spills coffee on the server).

– or Software failure (the web server crashes).

• So whatever your Uptime is, it will be less than the

Quoted MTTF.

6

Finding the Availability of Your Service (3)

• Now the really big one, finding your Downtime:

– For simple failures, like the database crashing, your

admin can simply restart it, but how long does it

take?

– If the server has really failed, how long does it take

you to find another one and get it up and running?

– If you use a co-location service how long does it

take to get someone out there?

• The Downtime is really the biggest unknown in finding

your Availability.

7

Clustering and High Availability

• The simplest way to improve the Availability of a

system is to have a duplicate waiting to take over if

anything goes wrong.

• This duplication describes the simplest form of

Active/Passive cluster.

• Here, the Down time of the Service is the Time it takes

the Passive node to detect the failure plus the time it

takes to recover the service.

• This is often termed the “Availability Equation” (but

more accurately, it is the downtime equation)

D = Tdetect + Trecover

8

Clustering and High Availability (2)

• So, if you have a Service Level requirement, what a

cluster really does for you is quantify exactly the

Downtime D.

• Thus, it eliminates a huge quantity of uncertainty from

your enterprise.

• However, note that implementing cluster still doesn’t

give you any handle at all on your Uptime U .

• Therefore, you still cannot predict your Availability,

even with a cluster, unless you know your Uptime.

– All you’ve done is controlled your Downtime.

9

Clustering and High Availability (3)

• The reason clustering implementation is so important is

precisely because the cluster cannot control Uptime.

• The only way to control uptime is by careful

implementation and deployment of the cluster. This is

why things like:

– Hardware burn in,

– Redundancy in communications and storage,

– Multiple redundant power supplies,

– All the traditional uptime lengtheners

are still important in cluster deployment.

10

Case Studies: Crashing Web server

• My web server currently crashes once a week, but I’m

going to implement clustering to give me a five nines

(99.999%) uptime.

• No, and here’s why:

– Webster crashing once a week give at most an

Uptime of a week.

– Suppose the cluster can reduce the downtime to,

say, ten seconds (five to detect and five to recover).

– That gives an overall availability of

7 × 24 × 60 × 60

(7 × 24 × 60 × 60) + 10
≈ 0.9999834

– or only 99.998% uptime (four nines).

11

Morals from the Case Study

1. A cluster isn’t a silver bullet for solving all your

problems.

2. However, it can get you a significant fraction of the

way there

• Even in the example of an appalling one week

uptime, if the sysadmin takes ten minutes to notice

the problem and restart the server, that’s an

Availability of 99.90% (or three nines).

• Implementing clustering got you a whole order of

magnitude better.

3. You must clearly understand where your problems lie to

understand if a cluster solution can meet your

expectations.

12

Users and Failure Tolerance

• Sometimes, Availability is a misleading measure, and

Downtime is the true quantity users care about.

– It’s all about perception.

• In the web server example: a regular user who

complains to the admin once a week to get the service

restarted regards the service level as unacceptable.

• However, if the cluster can restart it in ten seconds, he

only has time to notice the failure and click again to

get the service restored.

• A similar service glitch could be caused by the Internet

or DNS resolution or a host of other problems between

the user and the service, so the user will tolerate this

level of downtime.

13

Five things to know before you start

• Do you currently have a service problem that you’re

trying to solve?

• What is the nature of the service you’re trying to

protect and how do its users react to outages?

• Do you care about absolute Availability, or is

controlling the Downtime sufficient?

• If you care about availability, can you accurately

measure your current uptime?

• For any given HA solution, can you estimate the

maximum Downtime it will give your applications

before you install it?

14

Types of Clusters

• Clustering really falls broadly into three categories

– High Performance Computing (HPC). Cluster Many

machines together to get much higher processing

power than a single machine (e.g. Beowulf).

– High Availability (HA). Cluster machines together to

produce the availability of a set of services (e.g.

LifeKeeper, Heartbeat, Cman, etc.)

– Fault Tolerant (FT). Similar to HA but with much

more strict availability requirements

• and one that isn’t really a cluster at all, but is often

regarded as one

– Web server Farms

15

Graphing Availability versus Performance

P
er

fo
rm

an
ce

Availability

High Availability

High Performance Computing
(Beowulf)

Webserver Farms

(Fault Resilience)

Full Fault Tolerance

16

The Difference Between Fault Tolerance and

Fault Resilience

• The difference between these two terms indicates how

the users of the service see the failure and recovery.

• Fault Resilience: Means that users may notice some

disruption:

– Web users may see a transient failure to find the

page.

– Database users may see a single error committing a

transaction.

• Fault Tolerance: means that the users notice no

disruption in the service at all (although they may

notice a “pause” while recovery occurs).

17

Shared Storage Clusters

Node 1 Node 2 • Two or more computers

connected by a shared

storage bus (either SPI

or FC).

• An external (and

redundant) array to

provide data to either

node.

• Not the only model: could also provide data availability

via replication

18

Clusters and Fault Tolerance

• There’s no clustering technology available in the market

today that provides full fault tolerance for every service.

• Originally, full fault tolerance was achieved

– by running multiple copies of the application in a

cluster

– splitting inputs to go to each application

– comparing outputs to check for errors (should be

identical)

– if one server fails, the other instances keep the

service running exactly until there are none left.

• However, even in today’s clusters, some (but not all)

services are still fault tolerant.

19

High Availability and Failover Clusters

• Most clusters on the market today are failover.

• This means that they require no changes to the

application to permit failover.

• Instead, they throw a harness around the application to

control restarting it on another server.

• This approach relies on the application being coded in

a crash resilient fashion, by:

– not keeping critical data in memory,

– placing all non-volatile data on permanent storage

in an atomic (or recoverable) fashion,

– ensuring that data is actually on permanent storage

before signalling completions back to the user.

20

Fault Tolerance and Failover Clusters

• By and large, if the cluster relies on the crash resilience

of the application, it is not going to be fault tolerant

– primarily because uncommitted (and

unacknowledged) data may be lost requiring the

user to retransmit it.

– for example a row insert in a database table may be

returned with an error indicating the client should

try again.

– sometimes the user’s client will do the retry without

showing the failure to the user, giving the

perception of fault tolerance.

– but most of the time, the user’s application will

have to be coded to do the retry itself.

21

Fault Tolerance and Failover Clusters (2)

• Some services which are truly stateless may be

recovered in a fault tolerant manner even in failover

clusters.

• The classic example is NFS

– designed by Sun with true statelessness built into

the protocol

– no persistent information about the client is

retained in the server process.

– If information (for example file writes) is lost, the

NFS client automatically retries.

• Of course, extra stateful protocols (like locking) are

layered on top of NFS which do cause fault tolerance

problems.

22

Understanding the Consequences of Fault

Resilience

• First and foremost, are the problems it may cause on a

failover important to you (i.e. what will your users see

in the face of a failure)

– For web servers, usually the answer is “no”

– Users are trained to press “reload” if the web page

times out or comes back with a web server error.

– A web page that shows an internal error from the

database may be less welcome.

• Secondly, is there anything you can do in the way the

client application works to improve the user experience?

– Retry transient transaction errors automatically, for

instance.

23

Important points

• Your need to know if the service you are protecting is

fault tolerant or fault resilient.

• If it is fault resilient, you need to understand:

– the impact of the failover to the service being

exported from the cluster

– The visibility of this impact to the external users of

the service.

• If you also control the client side of the service, you

should plan your implementation to take into account

service anomalies caused by failover.

24

Monitoring

• Every cluster (without exception) provides the ability to

monitor health at a node level.

– so node failures may be spotted and corrected.

• some clusters also provide the ability to monitor

individual applications and even restart them locally if

they have failed.

– this is essential, because applications can fail more

often than the node (e.g. the web server crashes

every week example)

– Local recovery is important (because it can

decrease downtime and minimise disruption).

25

Customising your Cluster Environment

• Cluster vendors try to provide off the shelf recovery

tools for typical applications

– web servers, databases, file exports (NFS or

SMB/CIFS) etc.

• However, in a complex environment you often have

custom applications that the cluster vendor won’t

support out of the box.

• In this case you need to know what options are

available to you to support your application

– does the cluster provide an easy way to protect and

monitor arbitrary applications?

– Does this come as an extra, or is it available with

the base product.

26

Looking Beyond the Software

• As we learnt previously: a cluster helps you minimise

Downtime. It cannot help you with uptime.

• However, uptime is extremely important to availability.

• Thus, as well as implementing clustering to improve

Downtime, you should assess your cluster hardware for

ways to improve uptime.

• Key to this is eliminating Single Points of Failure

(SPOF).

– Cluster wide SPOFs must be eliminated entirely

– Individual Node SPOFs should be assessed to see if

eliminating them would improve uptime.

27

Cluster Single Points of Failure

• In a shared storage cluster, the real SPOF is the

storage.

• Make sure that the external array is configured as a

RAID

• Not only that, but make sure it’s RAID 1 (mirroring)

– RAID 5 is cheaper, but in a double fault situation it

may end taking the array offline and corrupting

your data.

– RAID 1 preserves data integrity (but still takes the

array offline) in the double fault case.

• replication provides a cheap method of eliminating the

storage SPOF (separate copies of the data in each

node).

28

Node Single Points Of Failure

• In the shared storage cluster, the first and most

obvious Node SPOF is the connection to storage.

• The next most common is the power supply (the

non-silicon components often burn out or fail).

• Almost equally common is the failure of mechanical

devices like Fans

– Particularly nasty in todays world of hotter, faster

and actively cooled CPUs

– For example, a top of the line P4 will overheat and

burn out in less than a second if its heat-sink fan

fails.

29

Multi Path

• In the standard shared storage cluster, if a link to

storage fails, the application loses contact with the

data and the cluster must fail to another node that can

still access it.

Node 1 Node 2 • This happens

surprisingly often (cables

get trodden on, dust

gets into transceivers

etc.)

• Can obviously eliminate

this by having more

than one connection to

the storage per node

(called Multi-path).
30

The Costs

• Replication is essentially free.

• External Storage arrays cost about $3,000+ (FC arrays

begin at about $5,000)

• Multi Path, starts at about $10,000 and the sky is the

limit for truly Rolls-Royce solutions.

• Redundant Power Supplies and Redundant Fans only

found in higher end servers (not as add on items to low

cost servers), will drive server costs up by $3-5,000.

31

Managing your Systems

• Systems management is integral to SPOF elimination

• It is no use at all to buy a fully redundant system and

then keep it in a cupboard and never monitor it.

– redundancy will protect you when the first failure

occurs.

– the second failure will take down your server (or

cluster if it’s in the shared array).

– maintaining and replacing failed redundant

components is essential to preserving uptime.

• if you have no way of monitoring your server’s

redundant components, you may just as well opt for

cheaper hardware and allow the cluster to manage the

Downtime instead.

32

Choosing your Cluster

• Once you understand what you’re trying to achieve

(and what you might need to modify or alter to achieve

it)

• and you have identified either your availability or

Downtime goals

• you are ready to begin selecting an HA cluster product.

• Ideally, if you haven’t already purchased your hardware,

the cluster vendor should be able to guide you through

choosing this.

• if you do already have your hardware, make sure you

validate it with the cluster vendor first.

33

Cluster Products For Linux

• LifeKeeper (http://www.steeleye.com) available on all

enterprise Linux distributions, no proprietary modules,

Resource Driven, Cross Platform.

• heartbeat (http://www.linux-ha.org) now shipped with

SLES10, Quorate.

• and FailSafe (was shipped with SLES, now defunct)

• Mission Critical (Shipped with RHEL3 and below, now

defunct), Quorate

• Cman (Shipped with RHEL 4)

• Veritas Cluster Server (requires proprietary modules,

limited distro support), Resource Driven

34

Replication

• Clustering provides application Availablility

• Replication provides true distributed Data availability

• Replication maintains complete and up to date copies

of your data in multiple locations

– If these locations are separated by several miles (or

even several thousand miles) this gives true disaster

recovery.

• Replication is not true Continuous Data Protection

35

Replication Products

• SteelEye Data Replication: Based on md/nbd, no out

of kernel modules, available in All distributions with

recent (2.6.14+) kernels (SLES10, RHEL5), intent log

based.

• drbd: requires out of kernel, but open source module,

intent log based

• Veritas SRL: requires proprietary kernel module,

relatively limited kernel support, transaction log based.

36

How does Replication Work

• Replication can operate at three levels

– Application: SQL Replicatiors like that in MySQL

– Filesystem: No Linux Examples (too many

filesystems), Windows Replicators like XOSoft.

– Block level: drbd; md/nbd; Veritas SRL.

• Block level replication is the most generally useful

• Application level replication can be the most efficient

– because it understands the layout and meaning of

the data

– However, need separate replicator for every

application!

37

The Basics of Replication

Data Replication

NODE 1 NODE 2

Primary

Primary Replica

Replica

WAN Cloud

38

Replication Features

• Logs

– Transaction: Records both Data and Position

information

– Intent: Merely records unsynchronised blocks

• Synchronous replication

– Write is not reported as committed to the

application until the data is on both primary and

replica

– round trip latencies make this useful only in a LAN

environment

39

Replication Features (2)

• Asynchronous replication

– Write is reported as committed when data is safely

on Primary Media only—Replica data may still be

in-flight

– Logging is a requirement to make asynchronous

replication crash proof

– transaction integrity is preserved by correct ordering

of the replica writes.

– Most useful feature is ability to free replication from

latency concerns and the ability to fully utilise the

available bandwidth of the network

– Ideally suited to WAN replication over large

distances.

40

