
Clusters and High Availability

James Bottomley
SteelEye Technology

Introduction to High Availability using commodity
hardware clusters

Types of Cluster

" MPP - Compute clusters (Beowulf)
" FT - Full Fault Tolerance (Isis, Stratus)

� Recovery undetectable, no transaction loss

" HA - High Availability (LifeKeeper, Linuxha)

� Detectable recovery (seconds). Uncommitted
transactions may be lost

" DR - Disaster Recovery

� Committed transactions may be lost

" LB - Load Balancing

Availability Chart

Availability

P
er

fo
rm

an
ce

Performance Clusters
 (Beowulf)

HA

Fault Tolerant

" Performance Clusters
cannot tolerate
instantaneous failure

" HA can provie availability
with failure with virtually
no performance
degradation

" FT sacrifice performance
for avaliability

Fault Tolerance

" Multiple application
copies.

" Harness splits input
and monitors output.

" If >2 copies, may
identify failing
output.

" Applications must
use deterministic
transactions.

Cluster Harness

App App

Cluster

Client

Node 1 Node 2

High Availability

" Single copy of the
application.

" Recover only when
fault detected.

" Recovery time
depends on
application and
resources.

Cluster Harness

App App

Cluster

Client

Node 1 Node 2

Failure Modes

" Local

� Application fails but cluster node still operates.

� May recover application locally or on a different
node.

� Recovery Mediated by node where failure
occurs.

" Global

� Entire node fails (or hangs).

� Recovery mediated by cluster.

Failure Detection

" Local: Must have customised watcher that
monitors the services the application
provides (simply checking the process isn't
enough)

" Global: Every node watches every other via
multiple distinct communication paths.
When all paths fail, the node at the other end
is assumed to be dead.

" Must prevent spurious Global failure
detection caused by comm path failure.

Pathological Failures
" These are failure modes induced by the

setup:

� Single Points of Failure (SPOFs) outside the
control of the cluster harness.

� Total or partial failure of the cluster
communication paths causing one or more
nodes to appear dead.

� Complete or partial system hang.

" Eliminate SPOFs by careful hardware design
provisioning and deployment.

" Cluster software must prevent inappropriate
response to comm path failures.

Pathological Application Failures

" HA moves
protection into app
by monitoring

" If app failure due to
data input, no
amount of restarts
will fix the problem

" Fortunately, most
apps well behaved.

Operating System Application

Protection Boundary

Protected Unprotected

Recovery Requirements

" Application itself must be capable of
recovering from a crash.

" All resources that may be used by the
application (open files, database
connections, IP addresses etc.) must be
available.

" If all resources are available, the application
may be recovered on a different node.

" Applications are resource aware not location
aware.

Performing Recovery

" If the Recovery Requirements are satisfied,
most of the work is done by the application

" The HA software only has to provide the
resources and then start up the application.

" Clients of the application see an interruption
in service while all this is going on.

" The level of interruption depends on how the
application is coded to handle crashes.

Providing IP resources

" Moving an IP address from one machine to
another is easy (use ip aliases).

" Getting other machines to see the switch is
harder because of ARP caching.

� Any machine on the network may respond to an
ARP request if the mapping is in its cache.

� Gratuitous ARP (GARP) is one method of forcing
the switch to be seen (used by linux-ha).

� ARP cache flushing is another (used by
LifeKeeper).

Providing Storage Resources

" Need either physical access to the storage
from all nodes in the cluster (shared SCSI,
SAN etc.) - Expensive

" or replicated copies - Cheap but a network
bandwidth hog (also less reliable).

" Pathological failure modes can produce data
corruption unless you have I/O Fencing.

� STONITH devices

� Watchdog timers

� SCSI Reservations (Shared storage only)

Replication

" For HA, replication must be synchronous

� Block only acknowledged as committed when it
reaches the storage on both primary and
secondary.

� Adversely affects latency.

" If connection breaks, must resynchronise
entire volume! Mitigate with:

� Transaction Log (unbound but doesn't corrupt
secondary on replay).

� Intent Log (known size but corrupts secondary
during log replay).

Shared Storage

Array

 Storage
 Interconnect

" External RAID array
expensive

" Eliminating Single
Points of Failure
(dual loop) even
more costly

" However, often a
choice for large
dataset (enterprise)
environments.

SANs

" Storage Area Networks

� Fibre Channel Based

� Essentially bigger and better shared SCSI.

" SAN Problems inherent in Linux but impact
Clusters:

� Lack of decent device identification and
management infrastructure (but see LVM, EVM)

� Lack of large number of device support
(possibly change in 2.5).

� Need a useful device node naming scheme.

Shared Host Based Raid

 Storage
 Interconnect

" Raid Controller is
inside each node

" Slightly Cheaper
Alternative to
Shared Storage

" RAID cards must be
cluster aware

" I/O fencing
problems even more
acute (destroy RAID)

STONITH

" Shoot The Other Node In The Head.
" Implemented as a serial line controlled

power supply for the whole cluster.

� Obviously a SPOF.

" When Node A detects failure on Node B it
turns off Node B's power.

� Active protection.

� Races mediated by Stonith device.

� No more effective than an additional comm path
for pathological comm path failure.

Watchdog Timers

" Must be prodded by system periodically or
they power off the machine

" Primarily cure I/O fencing problems caused
by system hangs.

" Do not cure problems caused by
pathological comm path failure

� Can mitigate this by making the storage access
a communication path (disc based mailbox).

SCSI Reservations

" Most reliable: Access mediated by the
device itself.

" Unfortunately, not supported by all devices

� and even supporting devices may have quirky
implementations.

" Not implemented in the vanilla Linux Kernel

� Most OS distributions (RedHat, SuSE etc.) have
support in their kernels.

" Reservations may be used to arbitrate a total
comm path failure situation.

Recovery By Hierarchy

" Applications may
depend on other
Applications and
Resources

" Must perform an
ordered recovery

" Hierarchical
divisions also make
monitoring easier

DatabaseIP Address

File System

Storage

Web Server

HA versus Disaster Recovery

" Difference is in committed transactions:

� HA must not lose committed transactions

� Disaster Recovery (DR) may lose a pre-specified
number of committed transactions.

" Very difficult to automate DR unless you are
sure you need take no corrective action for
the lost transactions.

� Bank's cash machine transaction? Probably not

� Non revenue record update? Possibly

What is a Transaction?

" Almost any action for which you have an
agreement followed by an action.

� e.g. Buing an item is a three stage transaction:
Agree on price, pay price, take item.

" In computer terms, a transaction is defined
as an abstraction of an atomic and reliable
execution sequence.

" Idempotent transactions are ones which
may be repeated without affecting anything.

Disaster Recovery Criteria
" DR protection done by geographically

dispersed data replication

� Large distances make lowering latency almost
unviably expensive for synchronous replication

� Must replicate asynchronously to avoid latency
but must preserve data ordering so replica is
always an Out Of Date copy of Primary.

� Limit transaction loss by limiting the amount of
sent but unacknowledged data blocks between
the primary and the secondary.

� Tuning this "window" allows a Bandwidth for
Latency swap.

Transmission Interruption

" If transmission is interrupted, mirror breaks.

� When transmission restored, must avoid
resending the entire primary data set.

" Do this by keeping a log of Sent but
Uncommitted transactions.

� Only need to replay this log to bring replica into
sync with primary

" Two types of logging

� Transaction.

� Intent.

Transaction Log

" Keep an ordered local log of all data blocks
that would have been sent to the replica.

" Can thus replay log in order, so replica is
out of date but never corrupt.

" Since data contents are logged, log space
requirements are large.

" Log grows without bound and could
overflow available space for long
transmission line interruptions.

Intent Logging

" Instead of logging actual data, just keep a
record of where the data has changed
between primary and replica.

" On replay, just send changed blocks.
" Ordering not stored in log, thus replica is

corrupt while log replay is in progress.
" Log can be a bitmap covering volume and is

a known non-increasing size.

Conclusions

" Well designed applications recover
themselves.

" HA software must look after resources and
monitoring.

" HA software must plan for and cope with all
pathological failures.

" Replication can be used for HA or DR but
using different characteristics.

